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In a paper by Korenev [ 1 I the problem of the indentation of a general- 
type elastic foundation by a circular planar stamp was reduced to a pair 
of integral equations for a certain auxiliary function. 

In the case of the contact stress this problem is directly reduced in 
the Present paper to a Fredholm integral equation of the first kind. 
Further, for certain types of elastic foundations, in particular a homo- 
geneous elastic half-space, this integral equation is simply transformed 
into a Wiener-Hopf equation which admits an exact solution. 

It is shown that in certain cases the method presented allows one to 
obtain an exact solution of the axisymmetric contact problem, with the 
surface structure of the contacting bodies taken into account 12 1. 

1. 'l'he results which are obtained here are based on a formula which 
allows one to compute the settlement w(r) of the surface points of an 
elastic foundation which is subjected to a vertical line load distributed 
over the circumference of a circle. It is not difficult to derive this 
formula for a foundation of a very general type. One needs only to inte- 
grate the relation 

Here Jo(x) is a Bessel function of the first kind, we(r) is the 
settlement of a surface point of the foundation located at a distance 
F = \/ (x2 + y2) from the point of application of a unit load. 

One is easily convinced, for example, that for a homogeneous elastic 
half -space 

105 
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j, (I) = (1 - po2) (nf$’ 

For a half-space with a modulus of elasticity which varies according 

to a power law E = E,,z” 

(1.2) 

A table for the coefficient a0 has been compiled by Klein I.3 I. It 
can be verified further that the relation (1.11 is also valid for an 

elastic layer (0 < z G/L). Likewise, it is valid for a half-space with a 
modulus of elasticity which varies according to the law [4 I 

If the foundation is subjected to the load p(x, y) then the settle- 

ment is determined by the formula 

WC? Y> = ~Mt)dt ~J.U+ - 8" + (Y-Yr1)2) PC& d@dll (1.3) 
Ii --CC 

A load of unit magnitude, distributed, over the circumference of a 
circle of radius p, can be represented in the form 

.____ 
p(s, y) = q-P) = qVz2+Y2-P) (l-4) 

where 6(x) is the delta function. 

We shall denote by UJ(T, p) the settlement of the foundation under the 
load (1.4). 

Substituting from (1.4) into (1.3), making the change of variables 

z=rcoscp, Y=rsincp, E=pcosfJ, q=psin0 

and using the well-known properties of the delta function, we obtain 

w (r, P) = PYf, (4 dt~J,(tw 2prcos(cp+ q+pydJ 
0 0 

Finally, expanding the integrand in the second integral into a series 

of Bessel functions and carrying out the integration, we find 

UJ (r, P) = 2flP rto 0) J, (rt) J, (Pq dt (1.5) 
4 
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For the case of a homogeneous elastic half-space this formula coin- 
tides with the formula deduced by Egorov by other means. 

The formula obtained permits one to reduce the axisymnetric contact 
problem, both in the case of the circle and of the ring, to the follow- 
ing integral equation (tangential interaction along the contact surface 
is not taken into account): 

i w (r, P) P (PI dP = w e9 (no < I- d a) L (1.6) 

In the case of a circular contact region (aa = 0), and for certain 
types of elastic foundations, a straightforward transformation takes 
Equation (1.6) into a Wiener-Hopf equation for which it is not difficult 
to find an exact solution. 

However, it seems to us that in the case of an approximate solution 
it is also advantageous to be able to reduce the problem of finding the 
contact stresses directly to an equation of the form (1.6). We also note 
that the relation (1.6) obtained above is convenient for the calculation 
of the settlement under a planar circular or annular flexible foundation. 

2. We shall show that the contact problem for a circular region in 
the case of homogeneous half-space or a half-space which satisfies (1.2) 
can be reduced to the solution of a Wiener-Hopf integral equation. In 
doing this we shall pose the problem in a somewhat wider sense than in 
the preceding section. 

We consider two contacting elastic bodies with different elastic pro- 
perties and close to half-spaces in shape. ‘Ihen, following Shtaerman 
[2, p. 175 1 , we may write 

a = WI(r) + z&)+%(r) - wz(r) (2-l) 

where a is the approach of the elastic bodies upon compression, z = zl(r) 
and z = zZ(r) are the equations of the surfaces which bound the compress- 
ed bodies (the first body is defined as the body into whose interior 
passes the positive z-semiaxis), q(r) and wp(r) are the vertical elastic 
displacements of the points of contact. As usual, we shall make the 
approximation that the displacements w1 and wz are the same as if the 
pressure induced over the surface of contact were acting on upper and 
lower elastic half-spaces with the same elastic properties as those of 
the compressed bodies. 

‘lben, assuming perfectly smooth bodies, we may use Formula (1.5) for 
the calculation of wr and w2. For an elastic foundation of type (1.2) a 
suitable representation is of the form 



108 G. la. Popov 

where 

w (r, P) = cp-“k” (r /P), k, (z) = r&, (s) J,, (sz) s” ds (2.2j 
0 

c _ 21-y r (l/z - v/Z) 

BY r (‘ia + Y/2) 

In the case of a homogeneous elastic half-space 
Formula (2.2) 

v = 0, c = 2 (1 -PLO”) 
E 

one should place into 

(2.3) 

Retaining the previous notation p(r) for the contact stress, one may, 
in view of (2.21, write 

a 

WLS = f ~1.2 
s 

k, (r I’ P) P-“P (P) dp 
0 

Substituting this expression for ~1~ and 2u2 into (2.1) we arrive at 
the integral equation 

a 

s kV (r i P) P-V (P) do = i’ (r), O<r<a (2.4) 
0 

where 

f 09 = 
a-_-l(r)-h(r) 

Cl + c-2 
(2.5) 

As a result of the change of variables 

r = ae-x t p = ae-z, 31 (EJ = ae-?p (ae-z) (2.6) 

the integral equation (2.4) passes into a Wiener-Hopf integral equation 
of the first kind: 

m 

c i (5 - 5) 1c (5) = g (x)3 o<x<oc (2.7) 
Ci 

In the case at hand 

I (z) = e-+fk, (e-z), g (x) = e-%~f (ne-+) (2.8) 

‘Ihe solution of Equation (2.7) is easily constructed by a method which 
has already been applied by us [ 6,7 1 and which was presented at the All- 
Union Congress of Theoretical and Applied Mechanics. 
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In this method it is first necessary 
tion with a special right-hand side 

CD 
P 

109 

to find a solution of the equa- 

(2.9) 
0 

and then, expressing g(x) as a generalized Fourier integral [8, p. 11 1 

g (x) = .& 1 G (w) eiWx dw, G (w) = rg (2) e-i”‘zdx (2.10) 
Y 0 

one may obtain the solution of Equation (2.7) in the form 

x (4 = 

However, the solution of the 
formula 

key equation (2.9) is given by the 

(2.19) 

(2.12) 

In this case the functions &(w) should be regular and different from 
zero in the upper and lower half-planes, respectively, (excluding the 
point at infinity) and should satisfy the relation 

[L (u) = 7 2 (t) eiut dtj-‘= 9, (u) I@_ (u) (--w<u<w) (2.13) 
-co 

At infinity the functions &(tu) should behave in the following manner: 

S,(w)=O(wp), lmwG50, p<l (2.14) 

The contour of integration is understood to be a line (m,- 00) 
parallel to the real axis in the lower half-plane and located a suffi- 
ciently small distance away from it; more exactly, such that all singular 
points of the integrand lie below the ingration contour. 

lbe problem of finding the functions corresponding to the given func- 
tion carries the name of the factorization problem, and has a solution 
for a sufficiently wide class of functions which are continuous over the 
entire interval (CO,- 00)[9 1. 

By direct substitution (compare [6,10 1 ) it can be verified that the 
function (2.12) satisfies the equation (see also 19, p. 109 1 ). 

3. In the case at hand, the Fourier transform of the kernel of the 



110 G.Ia. Popov 

integral equation (2.7) can be computed in 

L(u) = 
1’ (l/zY - ‘/ziu) 

21--T (1 + lIzI’LL - l/zv) 

finite form 

r V/z + l/ziu) 
r (l/z - llziu) 

(3.1) 

Here it is necessary to use a well-known formula [ll, p. 259 I twice: 

9” J, (ax) dx 

\ 
r (‘/‘A~ + l/2) 

8: 
xP-_q = 2P-q&TS-lr (p _-‘/2q + ‘i2) 

(3.2) 

In view of the analytic properties of the ganvna function of Euler 

Cl2 1 we readily find that in the present case 

*+ (u) = 
r (11~ - lizi 

k(u) = 
2*-T (1 + l12iu - 1/2~) 

r (v2v - lj2iu) 9 r (l/2 + ‘l2iu) 
P-3) 

Using the well-known asymptotic representation of l?(z) at infinity 

112 1 it may be verified that conditions (2.14) are satisfied. 

Hence, the function xc (z) is found. Substituting it into Formula 

(2.11) we obtain the solution of the contact-problem integral equation 

for the case of a general right-hand side. By means of a number of trans- 

formations this solution may be brought into the form of one of the known 

solutions Il.13 I. 

At the end of the paper a simpler form will be found for the solution 

of the problem at hand with an arbitrary right-hand side. However, having 

only the solution xc (x) for a special right-hand side, one can examine 

the majority of cases of practical interest in a contact problem. 

We shall denote the right-hand side of Equation (2.7) corresponding 

to this solution by f<(r). Thereby, on the basis of (2.8), we have the 

equation 

fr(r) = &-v--i: (3.4) 

We denote the contact stress in this case by p<(r). It will be asso- 

ciated with the solution of Equation (2.9) by the relation 

xC (z) = ae+p; (m-x), ae-x = r (3.5) 

By the proposed method the solution of the contact problem permits 

one to find the magnitude of the force P compressing the bodies without 
first determining the contact stresses and integrating them over the 

interval (0, a). 

Although this is true in the general case we shall restrict ourselves 

in the proof to the case (3.4) for which 
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P; = 2x rp, (r) dr 
s 
0 

(3.6) 

lhe generalized Fourier transformation of the function xl (x1 I_8 1 

will have on the basis of (2.12) the form 

X,-(u) = i 
1cI+ (u) 9_ (- 5) 

uf5 (3.7) 

'lhe compressive force Pg is very simply expressed in terms of this 

function 

PC =2naXC (i) (3.8) 

In order to verify this it is necessary to consider the relationship 
03 

ax, (u + i) = a xc (x) ei (u+)x dx 
0 

substitute therein (3.5) and make an obvious change of the variable of 

integration; as a result one obtains 

aXC(u + i) = \ rp,.(a/ r)iudr 
0 

Thus, taking (3.6) into account, (3.8) follows also. In view of (3.7) 

and (3.8) we find 

p, = ina r (1 - %i5 + Ilav) 

z + 5 r P/z + l/D) r (‘is - l/Y&) (3.9) 

In order to obtain a formula for p (r) which will be convenient in 

the sequel we transform the right-han 5 side of (2.12). With this goal in 

mind and taking into account (3.3) we represent it in the form 

where 

Xr (4 = 9- (- 5) ISl(4 + 32 (41 (3.10) 

(3.11) 

(3.12) 
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Here we have used the identity 

1 1 
--+ 

v + i5 -- 
u+L u+ 1Y (Y - iu) (u + 5) 

and the well-known relation for the gamma function [12 1 

r (1 -I- z) = zr (2) 

Ihe integral (3.11) is the sum of residues 

s, (2) = ; 
(- l)ne-(27Gl)x 

Ll n! 1‘ ('/Z + li'2Y - n) 
?I=0 

(3.13) 

(3.14) 

On the basis of the well-known relation 

l? (2) l? (1 - z) = n cosec z (3.15) 

the following equality holds: 

TcP(~/~ + 1j2y - ~2) = (- I), sill (y2 - I/,-~) fir (11~ - 112~ + ~2) 

Taking into account the latter, as well as the series representation 

for the hypergeometric function 112 I, one may write 

S,(z) = x-lsin(l/, - i/*~)nl' ('iz - ijay) cxF(‘/, -1/2~, /3, f3, e-2X) 

whence [12, p. 329 I 

1)'i (CC) = it-i sin (Ii2 -l12y)~I (li2 - l/q~)e-x(l - e--2x)11:y-'/2 (3.16) 

If one uses the indentity 

(u _I_ 5)-l= _ i i q-iU-ii-ldq 

0 

then, after a change in the order of integration, Expression (3.12) takes 

on the form 

Making the change of variables - LU = s in the inner integral and 

using the relation [14, p. 88 1 

EJriOO 

1 - 
2ni s r (P + v24 

1’ (a + P + s/2) 
x-ds = 

2q-1 (a) (I- ?/q--l (O<z\( 1) 

0 (x> 1) 
E-iw 

we find 
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s2 (4 = e-= r (l;2++i?,2v) 1 q--i~_2 (1 e;y+z 
(3.17) 

e-% 

J3y virtue of (3.5), (3.10), (3.16) and (3.17) we obtain the contact 

stress p<(r) 

pr (r) = *- (-- 0 [a-v (a2 - r2p+ + (v f ig ai’: \ 
I‘ P/z + vaw 

a (p - r2)1J2~--% dt 
t l+v+ir ] 

(3 18) 
. 

r 

4. In order to encompass most of the examples of axisynnnetric contact 

problems for the case of a homogeneous body which are considered by 

Shtaerman in his monograph, it is sufficient to restrict ourselves to 

the case 

q(r) + 22(r) = Ar" 

where u is an arbitrary positive number. In this case 

f(r) = (Cl + C2)-'(a - AP) 

and, therefore, on the basis of (3.4) 

and hence 

p(r), p = G2 [PC Cd 7 P,l,=iv - g [PC tr)7 PClt=iv+ia (4.1) 

From this, using the obtained formulas (3.18) and (3.191, we find 

P 0.) = Pyrl (l/2 + llzv) a r (1 + l/25) a0 

Cl + c2 r v/2 + ‘l,Y) 
---A 

r P/2 + V2Y + ‘ha) I 
(a2 - r2)‘/zv--‘/*+ 

2l-"r (1 + l/n@ G 
a 

$_ _A_ 
cl + c2 r (V2 + 1i2v) r pi2 + w + 1/25) s 

(t” - r2)‘lr’+ta-ldt (412) 
P 

P= 
Jfp-~al+V Ar (1 + a/2) a” 

(cl+ ~2) r Vi2 + V29 (1 + VI r ;I’i2 + 1/2~) - (I+v+~) r pj2+l/zv + l/2o) I (4.3) 

From the condition that the contact stress is finite at F = a we find 

u = A r (11~ + 1i2~) r (1 + v25) 
r (v2 + v2v + w) 

a” 

Substituting (4.4) into (4.3) we find the radius 

tact 

(4.4) 

of the area of con- 
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a'+Y+b=~cl+C2(1+v)(1+Y+6) 

A 22--vn r (1 f l/z4 r (‘is -I- l/zY) r (I/:! -I- l/zY $ ‘/go) (4.5) 

By virtue of (4.5) and (4.2) the formula for the contact stress in 

this case may be transformed into the form 

P (4 = JJ (1 + Y) (1 + v + 5) 
2na” (4.6) 

We consider now separate particular cases. We arrive at the case of 

the indentation of a stamp with a plane base if we substitute into the 

above formulas A = 0, (T = 0, c2 = 0, cl = c. Thereby, Formula (4.2) goes 

over into the formula obtained by Mossakovskii [13 I, and Formula (4.6) 

takes on the form 

p (r) = $ XL&! ((g _ rz)‘lr+‘,‘2* 

For v = 0 we obtain the Boussinesq formula. 

Further, we examine the indentation of a cone into an elastic body 

which is close to a half-space. If the generators of the cone form the 

angle y with the axis of smetry z, then [2, p. 43 1 

21(r) + 22 (r) = r cot r 

Hence, setting o = 1, A = cot y, in Formulas (4.4) to (4.6) we find 

P (r) = 
p (1 + VI (2 + v) 

2na2 
1 (tP ;; :;1!IV+& 

ria 

o1 _ I- P/z + V?.v) a v/n 
‘2 tan y 1‘ (1 + l/zv) ’ 

*2 = p (Cl + cd (1 + v) (2 + v) 
21-V Cot yn3~Z 

- r(1/2+1/2v)r (l+'/,t) 

We note that in contrast to the case of a homogeneous body (u = 0) the 

contact stress in this case does not have a singularity at the origin. 

As in the case of homogeneous bodies for zl(r) + z2(r) = A?“, i.e. 
for o = 2n, the contact stress here can also be expressed in terms of 

elementary functions. Indeed, proceeding in the present case as in [2 I, 

we obtain 

P (d = 
(1 + v) (1 + v + 2n) P 

2na2 C 1 
v+2n-1 + (v + 2n - 1) (v + 2,~ - 3) 

(k-2)(2n-4)...6.4.2 

a . . + (Y + 2n- 1) (Y + “n - 3) . . (Y + 3) (Y + 1) 

Formulas (4.4) and (4.5) correspondingly take on the forms 
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CI = A*n! I- P/z + 'IZY) 

r vi2 + '/zv + n) 
a2n 

a2n+l_ p s+c2 (~$_v)(1+v+2n) 

A 22--~~ lL! r v/2 + l/29 r v/2 + l/zv + n) 

We shall give now another formula, different from (2.11), for the 

solution of the axisymmetrical contact-problem integral equation. In 

this we start with the following result of Krein. He has shown [15 1 
that the solution of the integral equation of the type 

0 

s 
k (r, s) cp (s)ds- PT (r) = f(r) to <r < a) (4.7) 

0 

is given by the formula 

cp (r) = J- [l[q* (s; a)l(S)dslq(r; a)- M’(a) da 
0 

du ) Q (s; a) I(4 ds] t-h 
0 

f(r) 3 1, and q*(r; 
this case 

where q(r; a) is the solution 

a) is the 

of the integral equation (4.7) with 

solution of the associated equation. In 

We apply Formula (4.8) to the solution of the integral equation 

(4.8) 

M(a) = \ q(r; a)dr 

0 

(2.4)*. With this goal in mind we represent it in the following form: 

a 

\ 
'K (r, P) PP (P) dP = f(r) 
6 

(4.9) 

where 

K (r, P) = P-=%(r/p) = rJo(~p)YO (sr)~vd~ 
0 

* The idea of applying Formula (4.8) to the elastic contact problem is 
due to Krein, who used it on the plane elastic contact problem in the 
case of a homogeneous half-plane. This material has not been published 
by him. 
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Taking as the unknown function 

cp (r) = 'P(r) (4.10) 

it is easy to verify that K(r, p) = K(p, F) and therefore 

y* (7; a) = y (r; a). 

The solution q(r; z) of Equation (4.9) for f(r) = 1 is not difficult 
to find by the use of the results obtained above. Indeed, in view of 

(2.8), (3.5), (3.18) and (4.10), it can be seen that 

y (r; a) = u"r [p, (r)]<,_" = 21-"r-2(1/2 $ l/aY)r(Cza - ra)'Ay-l/z (4.11) 

whence 

M(a) = 

21-YaYS1 

M'(a) = 

21-v 
a' 

(Y+1)~(1/2+vzy) ’ r2 (l/z f'i2 Y) 
(4.12) 

In addition it is not hard to verify that 

$ [f (a2 ~$;;~l,*“] = 6 [f (0) + u \ f’ (at) (I + yt2) dt] ;, (1 _ t2)%-‘/2V 
(4.13) 

0 

Substituting (4.101, (4.11) and (4.12) into Formula (4.8) and taking 

into account (4.13), we find after some obvious transformations 

21-v c 
a 

P k> = 
v f’ (4 + sf” (s) 

p 1+y 
( ’ 

I_ s s ( 1 + 

2 / 

ta2 _ r$,-_, - r tn2 :$L o cu2 _ ,z)'/*-';*v 

that 

(4.14 

v; ds 
> I 

where 

7 = f (0) + al-” f "(:' 1 (l&)ds 
" (a2 _ ,2)/z- /zv 

In conclusion, we show that the method which has been presented here 

allows one to construct the exact solution of the axisymmetric problem 

when the form of surfaces of the contacting bodies is taken into account. 

Indeed, if one assumes contact along a circle in this case, the integral 

equation (1.6) will have the form 

X:P 09 + [ w 0-7 P) P (P> dp = w (r) (0 < 7 <aa) (4.15) 

0 

If one restricts oneself to the homogeneous half-space and assumes 
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that a coefficient k, depending on the structure of the contacting sur- 
faces, has the form k = act”, k = const, then, as a result of the change 
of variables (2.6) and because of (2.2) and (2.31, Equation (4.15) may 
be transformed into the following Wiener-Hopf integral equation of the 
second kind: 

~(2) = ue-%p (ue-x), h = 2 (i+-- p02) (xE)-l, f (z) = 3c%_u (ae+) 

As is well known, one can construct an exact solution of an integral 
equation of the type (4.16) E9 I , and hence one can obtain an exact solu- 

tion of the problem which has been formulated. 
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